Maximum likelihood estimation of signal amplitude and noise variance from MR data.
نویسندگان
چکیده
In MRI, the raw data, which are acquired in spatial frequency space, are intrinsically complex valued and corrupted by Gaussian-distributed noise. After applying an inverse Fourier transform, the data remain complex valued and Gaussian distributed. If the signal amplitude is to be estimated, one has two options. It can be estimated directly from the complex valued data set, or one can first perform a magnitude operation on this data set, which changes the distribution of the data from Gaussian to Rician, and estimate the signal amplitude from the obtained magnitude image. Similarly, the noise variance can be estimated from both the complex and magnitude data sets. This article addresses the question whether it is better to use complex valued data or magnitude data for the estimation of these parameters using the maximum likelihood method. As a performance criterion, the mean-squared error (MSE) is used.
منابع مشابه
Adaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum
A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...
متن کاملComputationally Efficient Maximum Likelihood Sequence Estimation and Activity Detection for M -PSK Signals in Unknown Flat Fading Channels
In this paper, we develop a computationally efficient algorithm for the Maximum Likelihood (ML) sequences estimation (MLSE) of an M-ary Phase Shift keying (M–PSK) signal transmitted over a frequency non-selective slow fading channel with an unknown complex amplitude and an unknown variance additive white Gaussian noise. The proposed algorithm also provides the ML estimates of the complex amplit...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملChange Point Estimation of a Process Variance with a Linear Trend Disturbance
When a change occurs in a process, one expects to receive a signal from a control chart as quickly as possible. Upon the receipt of signal from the control chart a search for identifying the source of disturbance begins. However, searching for assignable cause around the signal time, due to the fact that the disturbance may have manifested itself into the rocess sometimes back, may not always l...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 51 3 شماره
صفحات -
تاریخ انتشار 2004